ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnop Unicode version

Theorem rnsnop 4851
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
cnvsn.1  |-  A  e. 
_V
Assertion
Ref Expression
rnsnop  |-  ran  { <. A ,  B >. }  =  { B }

Proof of Theorem rnsnop
StepHypRef Expression
1 cnvsn.1 . 2  |-  A  e. 
_V
2 rnsnopg 4849 . 2  |-  ( A  e.  _V  ->  ran  {
<. A ,  B >. }  =  { B }
)
31, 2ax-mp 7 1  |-  ran  { <. A ,  B >. }  =  { B }
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434   _Vcvv 2610   {csn 3416   <.cop 3419   ran crn 4392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-xp 4397  df-rel 4398  df-cnv 4399  df-dm 4401  df-rn 4402
This theorem is referenced by:  op2nda  4855  fpr  5398  en1  6368
  Copyright terms: Public domain W3C validator