Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.28v Unicode version

Theorem rr19.28v 2706
 Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 106 . . . . . 6
21ralimi 2401 . . . . 5
3 biidd 165 . . . . . 6
43rspcv 2669 . . . . 5
52, 4syl5 32 . . . 4
6 simpr 107 . . . . . 6
76ralimi 2401 . . . . 5
87a1i 9 . . . 4
95, 8jcad 295 . . 3
109ralimia 2399 . 2
11 r19.28av 2466 . . 3
1211ralimi 2401 . 2
1310, 12impbii 121 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102   wcel 1409  wral 2323 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator