Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2va Unicode version

Theorem rspc2va 2715
 Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1
rspc2v.2
Assertion
Ref Expression
rspc2va
Distinct variable groups:   ,,   ,   ,   ,,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()   ()

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3
2 rspc2v.2 . . 3
31, 2rspc2v 2714 . 2
43imp 122 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wceq 1285   wcel 1434  wral 2349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604 This theorem is referenced by:  swopo  4063  ordtri2orexmid  4268  onsucelsucexmid  4275  ordsucunielexmid  4276  ordtri2or2exmid  4316  isocnv  5476  isotr  5481  off  5749  caofrss  5760  iseqoveq  9529  iseqcaopr2  9546  iseqdistr  9556  isprm6  10659
 Copyright terms: Public domain W3C validator