ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedeq2vd Unicode version

Theorem rspcedeq2vd 2711
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2709 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1  |-  ( ph  ->  A  e.  B )
rspcedeqvd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
Assertion
Ref Expression
rspcedeq2vd  |-  ( ph  ->  E. x  e.  B  C  =  D )
Distinct variable groups:    x, A    x, B    ph, x    x, C
Allowed substitution hint:    D( x)

Proof of Theorem rspcedeq2vd
StepHypRef Expression
1 rspcedeqvd.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcedeqvd.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
32eqcomd 2087 . . 3  |-  ( (
ph  /\  x  =  A )  ->  D  =  C )
43eqeq2d 2093 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( C  =  D  <->  C  =  C ) )
5 eqidd 2083 . 2  |-  ( ph  ->  C  =  C )
61, 4, 5rspcedvd 2709 1  |-  ( ph  ->  E. x  e.  B  C  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E.wrex 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator