![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcedvd | Unicode version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2706. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
rspcedvd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
rspcedvd.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rspcedvd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rspcedvd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | rspcedvd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | rspcedv 2706 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 |
This theorem is referenced by: rspcedeq1vd 2710 rspcedeq2vd 2711 modqmuladd 9448 modqmuladdnn0 9450 modfzo0difsn 9477 negfi 10248 divconjdvds 10394 2tp1odd 10428 dfgcd2 10547 qredeu 10623 pw2dvdslemn 10687 |
Copyright terms: Public domain | W3C validator |