ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 Unicode version

Theorem sb6 1782
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1781 . . 3  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
21anbi2i 438 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( ( x  =  y  ->  ph )  /\  A. x ( x  =  y  ->  ph )
) )
3 df-sb 1662 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
4 ax-4 1416 . . 3  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54pm4.71ri 378 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  ( (
x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ph ) ) )
62, 3, 53bitr4i 205 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257   E.wex 1397   [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443
This theorem depends on definitions:  df-bi 114  df-sb 1662
This theorem is referenced by:  sb5  1783  sbnv  1784  sbanv  1785  sbi1v  1787  sbi2v  1788  hbs1  1830  2sb6  1876  sbcom2v  1877  sb6a  1880  sb7af  1885  sbalyz  1891  sbal1yz  1893  exsb  1900  sbal2  1914
  Copyright terms: Public domain W3C validator