ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8euh Unicode version

Theorem sb8euh 1965
Description: Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
Hypothesis
Ref Expression
sb8euh.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb8euh  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )

Proof of Theorem sb8euh
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-17 1460 . . . . 5  |-  ( (
ph 
<->  x  =  z )  ->  A. w ( ph  <->  x  =  z ) )
21sb8h 1776 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  <->  A. w [ w  /  x ] ( ph  <->  x  =  z ) )
3 sbbi 1875 . . . . . 6  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  <->  ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
4 sb8euh.1 . . . . . . . 8  |-  ( ph  ->  A. y ph )
54hbsb 1865 . . . . . . 7  |-  ( [ w  /  x ] ph  ->  A. y [ w  /  x ] ph )
6 equsb3 1867 . . . . . . . 8  |-  ( [ w  /  x ]
x  =  z  <->  w  =  z )
7 ax-17 1460 . . . . . . . 8  |-  ( w  =  z  ->  A. y  w  =  z )
86, 7hbxfrbi 1402 . . . . . . 7  |-  ( [ w  /  x ]
x  =  z  ->  A. y [ w  /  x ] x  =  z )
95, 8hbbi 1481 . . . . . 6  |-  ( ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z
)  ->  A. y
( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
103, 9hbxfrbi 1402 . . . . 5  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  ->  A. y [ w  /  x ] ( ph  <->  x  =  z ) )
11 ax-17 1460 . . . . 5  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  ->  A. w [ y  /  x ] ( ph  <->  x  =  z ) )
12 sbequ 1762 . . . . 5  |-  ( w  =  y  ->  ( [ w  /  x ] ( ph  <->  x  =  z )  <->  [ y  /  x ] ( ph  <->  x  =  z ) ) )
1310, 11, 12cbvalh 1677 . . . 4  |-  ( A. w [ w  /  x ] ( ph  <->  x  =  z )  <->  A. y [ y  /  x ] ( ph  <->  x  =  z ) )
14 equsb3 1867 . . . . . 6  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
1514sblbis 1876 . . . . 5  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  <->  ( [ y  /  x ] ph  <->  y  =  z ) )
1615albii 1400 . . . 4  |-  ( A. y [ y  /  x ] ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
172, 13, 163bitri 204 . . 3  |-  ( A. x ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
1817exbii 1537 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
19 df-eu 1945 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
20 df-eu 1945 . 2  |-  ( E! y [ y  /  x ] ph  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
2118, 19, 203bitr4i 210 1  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283   E.wex 1422   [wsb 1686   E!weu 1942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-eu 1945
This theorem is referenced by:  eu1  1967
  Copyright terms: Public domain W3C validator