ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie Unicode version

Theorem sbcie 2857
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
sbcie.1  |-  A  e. 
_V
sbcie.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbcie  |-  ( [. A  /  x ]. ph  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem sbcie
StepHypRef Expression
1 sbcie.1 . 2  |-  A  e. 
_V
2 sbcie.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32sbcieg 2855 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  ps ) )
41, 3ax-mp 7 1  |-  ( [. A  /  x ]. ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1285    e. wcel 1434   _Vcvv 2610   [.wsbc 2824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-sbc 2825
This theorem is referenced by:  findcard2  6446  findcard2s  6447  ac6sfi  6455  nn1suc  8195  indstr  8832  bezoutlemmain  10612  prmind2  10727
  Copyright terms: Public domain W3C validator