ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegf Unicode version

Theorem sbciegf 2817
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1  |-  F/ x ps
sbciegf.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbciegf  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2  |-  F/ x ps
2 sbciegf.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32ax-gen 1354 . 2  |-  A. x
( x  =  A  ->  ( ph  <->  ps )
)
4 sbciegft 2816 . 2  |-  ( ( A  e.  V  /\  F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( [. A  /  x ]. ph  <->  ps ) )
51, 3, 4mp3an23 1235 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257    = wceq 1259   F/wnf 1365    e. wcel 1409   [.wsbc 2787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788
This theorem is referenced by:  sbcieg  2818  opelopabf  4039  eqerlem  6168
  Copyright terms: Public domain W3C validator