ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbor Unicode version

Theorem sbor 1927
Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbor  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )

Proof of Theorem sbor
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sborv 1862 . . . 4  |-  ( [ z  /  x ]
( ph  \/  ps ) 
<->  ( [ z  /  x ] ph  \/  [
z  /  x ] ps ) )
21sbbii 1738 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  \/  ps )  <->  [ y  /  z ] ( [ z  /  x ] ph  \/  [ z  /  x ] ps ) )
3 sborv 1862 . . 3  |-  ( [ y  /  z ] ( [ z  /  x ] ph  \/  [
z  /  x ] ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  \/  [ y  / 
z ] [ z  /  x ] ps ) )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  \/  ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  \/  [ y  / 
z ] [ z  /  x ] ps ) )
5 ax-17 1506 . . 3  |-  ( (
ph  \/  ps )  ->  A. z ( ph  \/  ps ) )
65sbco2vh 1918 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  \/  ps )  <->  [ y  /  x ] ( ph  \/  ps ) )
7 ax-17 1506 . . . 4  |-  ( ph  ->  A. z ph )
87sbco2vh 1918 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
9 ax-17 1506 . . . 4  |-  ( ps 
->  A. z ps )
109sbco2vh 1918 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps )
118, 10orbi12i 753 . 2  |-  ( ( [ y  /  z ] [ z  /  x ] ph  \/  [ y  /  z ] [
z  /  x ] ps )  <->  ( [ y  /  x ] ph  \/  [ y  /  x ] ps ) )
124, 6, 113bitr3i 209 1  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 697   [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736
This theorem is referenced by:  sbcor  2953  sbcorg  2954  unab  3343
  Copyright terms: Public domain W3C validator