Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sborv Unicode version

Theorem sborv 1786
 Description: Version of sbor 1844 where and are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sborv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem sborv
StepHypRef Expression
1 sb5 1783 . . 3
2 andi 742 . . . 4
32exbii 1512 . . 3
4 19.43 1535 . . 3
51, 3, 43bitri 199 . 2
6 sb5 1783 . . 3
7 sb5 1783 . . 3
86, 7orbi12i 691 . 2
95, 8bitr4i 180 1
 Colors of variables: wff set class Syntax hints:   wa 101   wb 102   wo 639  wex 1397  wsb 1661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443 This theorem depends on definitions:  df-bi 114  df-sb 1662 This theorem is referenced by:  sbor  1844
 Copyright terms: Public domain W3C validator