ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq1 Unicode version

Theorem seeq1 4123
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3062 . . 3  |-  ( R  =  S  ->  S  C_  R )
2 sess1 4121 . . 3  |-  ( S 
C_  R  ->  ( R Se  A  ->  S Se  A
) )
31, 2syl 14 . 2  |-  ( R  =  S  ->  ( R Se  A  ->  S Se  A
) )
4 eqimss 3061 . . 3  |-  ( R  =  S  ->  R  C_  S )
5 sess1 4121 . . 3  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )
64, 5syl 14 . 2  |-  ( R  =  S  ->  ( S Se  A  ->  R Se  A
) )
73, 6impbid 127 1  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1285    C_ wss 2983   Se wse 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rab 2362  df-v 2612  df-in 2989  df-ss 2996  df-br 3807  df-se 4117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator