ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  selpw Unicode version

Theorem selpw 3397
Description: Setvar variable membership in a power class (common case). See elpw 3396. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
selpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem selpw
StepHypRef Expression
1 vex 2605 . 2  |-  x  e. 
_V
21elpw 3396 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1434    C_ wss 2974   ~Pcpw 3390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-pw 3392
This theorem is referenced by:  ordpwsucss  4318  fabexg  5108  abexssex  5783  qsss  6231  npsspw  6723
  Copyright terms: Public domain W3C validator