ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftdm Unicode version

Theorem shftdm 9651
Description: Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftdm  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
Distinct variable groups:    x, A    x, F

Proof of Theorem shftdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4  |-  F  e. 
_V
21shftfval 9650 . . 3  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
32dmeqd 4565 . 2  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  dom  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
4 simpr 107 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  e.  CC )
5 simpl 106 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  A  e.  CC )
64, 5subcld 7385 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  -  A
)  e.  CC )
7 eldmg 4558 . . . . . . 7  |-  ( ( x  -  A )  e.  CC  ->  (
( x  -  A
)  e.  dom  F  <->  E. y ( x  -  A ) F y ) )
86, 7syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  dom  F  <->  E. y ( x  -  A ) F y ) )
98pm5.32da 433 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  dom  F
)  <->  ( x  e.  CC  /\  E. y
( x  -  A
) F y ) ) )
10 19.42v 1802 . . . . 5  |-  ( E. y ( x  e.  CC  /\  ( x  -  A ) F y )  <->  ( x  e.  CC  /\  E. y
( x  -  A
) F y ) )
119, 10syl6rbbr 192 . . . 4  |-  ( A  e.  CC  ->  ( E. y ( x  e.  CC  /\  ( x  -  A ) F y )  <->  ( x  e.  CC  /\  ( x  -  A )  e. 
dom  F ) ) )
1211abbidv 2171 . . 3  |-  ( A  e.  CC  ->  { x  |  E. y ( x  e.  CC  /\  (
x  -  A ) F y ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  dom  F
) } )
13 dmopab 4574 . . 3  |-  dom  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  =  { x  |  E. y ( x  e.  CC  /\  ( x  -  A ) F y ) }
14 df-rab 2332 . . 3  |-  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  dom  F
) }
1512, 13, 143eqtr4g 2113 . 2  |-  ( A  e.  CC  ->  dom  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F } )
163, 15eqtrd 2088 1  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   {crab 2327   _Vcvv 2574   class class class wbr 3792   {copab 3845   dom cdm 4373  (class class class)co 5540   CCcc 6945    - cmin 7245    shift cshi 9643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-shft 9644
This theorem is referenced by:  shftfn  9653
  Copyright terms: Public domain W3C validator