ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftf Unicode version

Theorem shftf 9937
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftf  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Distinct variable groups:    x, A    x, F    x, B
Allowed substitution hint:    C( x)

Proof of Theorem shftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5097 . . 3  |-  ( F : B --> C  ->  F  Fn  B )
2 shftfval.1 . . . 4  |-  F  e. 
_V
32shftfn 9931 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
41, 3sylan 277 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
5 oveq1 5571 . . . . . 6  |-  ( x  =  y  ->  (
x  -  A )  =  ( y  -  A ) )
65eleq1d 2151 . . . . 5  |-  ( x  =  y  ->  (
( x  -  A
)  e.  B  <->  ( y  -  A )  e.  B
) )
76elrab 2757 . . . 4  |-  ( y  e.  { x  e.  CC  |  ( x  -  A )  e.  B }  <->  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )
8 simpr 108 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A  e.  CC )
9 simpl 107 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  y  e.  CC )
102shftval 9932 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
118, 9, 10syl2an 283 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
12 simpl 107 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  F : B --> C )
13 simpr 108 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  ( y  -  A )  e.  B
)
14 ffvelrn 5353 . . . . . 6  |-  ( ( F : B --> C  /\  ( y  -  A
)  e.  B )  ->  ( F `  ( y  -  A
) )  e.  C
)
1512, 13, 14syl2an 283 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( F `  (
y  -  A ) )  e.  C )
1611, 15eqeltrd 2159 . . . 4  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  e.  C )
177, 16sylan2b 281 . . 3  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B }
)  ->  ( ( F  shift  A ) `  y )  e.  C
)
1817ralrimiva 2439 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C )
19 ffnfv 5376 . 2  |-  ( ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B }
--> C  <->  ( ( F 
shift  A )  Fn  {
x  e.  CC  | 
( x  -  A
)  e.  B }  /\  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C ) )
204, 18, 19sylanbrc 408 1  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2353   {crab 2357   _Vcvv 2610    Fn wfn 4947   -->wf 4948   ` cfv 4952  (class class class)co 5564   CCcc 7111    - cmin 7416    shift cshi 9921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-resscn 7200  ax-1cn 7201  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7418  df-shft 9922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator