ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi Unicode version

Theorem simp1bi 954
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp1bi  |-  ( ph  ->  ps )

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 118 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp1d 951 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  limord  4152  smores2  5937  smofvon2dm  5939  smofvon  5942  errel  6174  lincmb01cmp  9090  iccf1o  9091  elfznn0  9196  elfzouz  9227
  Copyright terms: Public domain W3C validator