ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3lr Unicode version

Theorem simp3lr 1011
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr  |-  ( ( th  /\  ta  /\  ( ( ph  /\  ps )  /\  ch )
)  ->  ps )

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 497 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ps )
213ad2ant3 962 1  |-  ( ( th  /\  ta  /\  ( ( ph  /\  ps )  /\  ch )
)  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  f1oiso2  5497
  Copyright terms: Public domain W3C validator