![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 941 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 922 |
This theorem is referenced by: simpll3 980 simprl3 986 simp1l3 1034 simp2l3 1040 simp3l3 1046 3anandirs 1280 frirrg 4113 fcofo 5455 acexmid 5542 rdgon 6035 oawordi 6113 nnmord 6156 nnmword 6157 fidifsnen 6405 dif1en 6414 ac6sfi 6431 enq0tr 6686 distrlem4prl 6836 distrlem4pru 6837 ltaprg 6871 lelttr 7266 ltletr 7267 readdcan 7315 addcan 7355 addcan2 7356 ltadd2 7590 divmulassap 7850 xrlelttr 8952 xrltletr 8953 icoshftf1o 9089 difelfzle 9222 fzo1fzo0n0 9269 modqmuladdim 9449 modqmuladdnn0 9450 modqm1p1mod0 9457 q2submod 9467 modifeq2int 9468 modqaddmulmod 9473 ltexp2a 9625 exple1 9629 expnlbnd2 9695 expcan 9741 maxleastb 10238 maxltsup 10242 addcn2 10287 mulcn2 10289 modmulconst 10372 dvdsmod 10407 divalglemex 10466 divalg 10468 gcdass 10548 rplpwr 10560 rppwr 10561 rpmulgcd2 10621 rpdvds 10625 rpexp 10676 znege1 10700 |
Copyright terms: Public domain | W3C validator |