ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 Unicode version

Theorem simpll2 955
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 919 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantr 265 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  fidceq  6361  fidifsnen  6362  cauappcvgprlemlol  6803  caucvgprlemlol  6826  caucvgprprlemlol  6854  elfzonelfzo  9188  qbtwnre  9213  expival  9422  subcn2  10063  divalglemex  10234  divalglemeuneg  10235
  Copyright terms: Public domain W3C validator