ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 6155
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )

Proof of Theorem smoeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
2 dmeq 4709 . . . 4  |-  ( A  =  B  ->  dom  A  =  dom  B )
31, 2feq12d 5232 . . 3  |-  ( A  =  B  ->  ( A : dom  A --> On  <->  B : dom  B --> On ) )
4 ordeq 4264 . . . 4  |-  ( dom 
A  =  dom  B  ->  ( Ord  dom  A  <->  Ord 
dom  B ) )
52, 4syl 14 . . 3  |-  ( A  =  B  ->  ( Ord  dom  A  <->  Ord  dom  B
) )
6 fveq1 5388 . . . . . . 7  |-  ( A  =  B  ->  ( A `  x )  =  ( B `  x ) )
7 fveq1 5388 . . . . . . 7  |-  ( A  =  B  ->  ( A `  y )  =  ( B `  y ) )
86, 7eleq12d 2188 . . . . . 6  |-  ( A  =  B  ->  (
( A `  x
)  e.  ( A `
 y )  <->  ( B `  x )  e.  ( B `  y ) ) )
98imbi2d 229 . . . . 5  |-  ( A  =  B  ->  (
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1092ralbidv 2436 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
112raleqdv 2609 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1211ralbidv 2414 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
132raleqdv 2609 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1410, 12, 133bitrd 213 . . 3  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
153, 5, 143anbi123d 1275 . 2  |-  ( A  =  B  ->  (
( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  <->  ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) ) ) ) )
16 df-smo 6151 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
17 df-smo 6151 . 2  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
1815, 16, 173bitr4g 222 1  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   A.wral 2393   Ord word 4254   Oncon0 4255   dom cdm 4509   -->wf 5089   ` cfv 5093   Smo wsmo 6150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-tr 3997  df-iord 4258  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-smo 6151
This theorem is referenced by:  smores3  6158  smo0  6163
  Copyright terms: Public domain W3C validator