ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso Unicode version

Theorem smoiso 5948
Description: If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )

Proof of Theorem smoiso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5475 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
2 f1of 5154 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
31, 2syl 14 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A --> B )
4 ffdm 5089 . . . . . 6  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
54simpld 109 . . . . 5  |-  ( F : A --> B  ->  F : dom  F --> B )
6 fss 5082 . . . . 5  |-  ( ( F : dom  F --> B  /\  B  C_  On )  ->  F : dom  F --> On )
75, 6sylan 271 . . . 4  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : dom  F --> On )
873adant2 934 . . 3  |-  ( ( F : A --> B  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
93, 8syl3an1 1179 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
10 fdm 5078 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
1110eqcomd 2061 . . . . 5  |-  ( F : A --> B  ->  A  =  dom  F )
12 ordeq 4137 . . . . 5  |-  ( A  =  dom  F  -> 
( Ord  A  <->  Ord  dom  F
) )
131, 2, 11, 124syl 18 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( Ord  A  <->  Ord 
dom  F ) )
1413biimpa 284 . . 3  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A )  ->  Ord  dom  F )
15143adant3 935 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Ord  dom  F )
1610eleq2d 2123 . . . . . . 7  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
1710eleq2d 2123 . . . . . . 7  |-  ( F : A --> B  -> 
( y  e.  dom  F  <-> 
y  e.  A ) )
1816, 17anbi12d 450 . . . . . 6  |-  ( F : A --> B  -> 
( ( x  e. 
dom  F  /\  y  e.  dom  F )  <->  ( x  e.  A  /\  y  e.  A ) ) )
191, 2, 183syl 17 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  <-> 
( x  e.  A  /\  y  e.  A
) ) )
20 epel 4057 . . . . . . . . 9  |-  ( x  _E  y  <->  x  e.  y )
21 isorel 5476 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
2220, 21syl5bbr 187 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  _E  ( F `
 y ) ) )
23 ffn 5074 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
243, 23syl 14 . . . . . . . . . 10  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F  Fn  A
)
2524adantr 265 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  ->  F  Fn  A )
26 simprr 492 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
y  e.  A )
27 funfvex 5220 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
2827funfni 5027 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
29 epelg 4055 . . . . . . . . . 10  |-  ( ( F `  y )  e.  _V  ->  (
( F `  x
)  _E  ( F `
 y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3028, 29syl 14 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3125, 26, 30syl2anc 397 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3222, 31bitrd 181 . . . . . . 7  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  e.  ( F `
 y ) ) )
3332biimpd 136 . . . . . 6  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
3433ex 112 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  (
x  e.  y  -> 
( F `  x
)  e.  ( F `
 y ) ) ) )
3519, 34sylbid 143 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  ->  ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) ) )
3635ralrimivv 2417 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
37363ad2ant1 936 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
38 df-smo 5932 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y
) ) ) )
399, 15, 37, 38syl3anbrc 1099 1  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   A.wral 2323   _Vcvv 2574    C_ wss 2945   class class class wbr 3792    _E cep 4052   Ord word 4127   Oncon0 4128   dom cdm 4373    Fn wfn 4925   -->wf 4926   -1-1-onto->wf1o 4929   ` cfv 4930    Isom wiso 4931   Smo wsmo 5931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-f1o 4937  df-fv 4938  df-isom 4939  df-smo 5932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator