![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snid | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snid |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snidb 3432 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 143 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sn 3412 |
This theorem is referenced by: vsnid 3434 exsnrex 3443 rabsnt 3475 sneqr 3560 unipw 3980 intid 3987 ordtriexmidlem2 4272 ordtriexmid 4273 ordtri2orexmid 4274 regexmidlem1 4284 0elsucexmid 4316 ordpwsucexmid 4321 opthprc 4417 fsn 5367 fsn2 5369 fvsn 5390 fvsnun1 5392 acexmidlema 5534 acexmidlemb 5535 acexmidlemab 5537 brtpos0 5901 en1 6346 elreal2 7061 1exp 9602 sizeinfuni 9801 bj-d0clsepcl 10878 |
Copyright terms: Public domain | W3C validator |