ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnzg Unicode version

Theorem snnzg 3515
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
snnzg  |-  ( A  e.  V  ->  { A }  =/=  (/) )

Proof of Theorem snnzg
StepHypRef Expression
1 snidg 3431 . 2  |-  ( A  e.  V  ->  A  e.  { A } )
2 ne0i 3264 . 2  |-  ( A  e.  { A }  ->  { A }  =/=  (/) )
31, 2syl 14 1  |-  ( A  e.  V  ->  { A }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434    =/= wne 2246   (/)c0 3258   {csn 3406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-v 2604  df-dif 2976  df-nul 3259  df-sn 3412
This theorem is referenced by:  snnz  3517  0nelop  4011
  Copyright terms: Public domain W3C validator