ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snss Unicode version

Theorem snss 3518
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
snss.1  |-  A  e. 
_V
Assertion
Ref Expression
snss  |-  ( A  e.  B  <->  { A }  C_  B )

Proof of Theorem snss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3417 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21imbi1i 236 . . 3  |-  ( ( x  e.  { A }  ->  x  e.  B
)  <->  ( x  =  A  ->  x  e.  B ) )
32albii 1400 . 2  |-  ( A. x ( x  e. 
{ A }  ->  x  e.  B )  <->  A. x
( x  =  A  ->  x  e.  B
) )
4 dfss2 2989 . 2  |-  ( { A }  C_  B  <->  A. x ( x  e. 
{ A }  ->  x  e.  B ) )
5 snss.1 . . 3  |-  A  e. 
_V
65clel2 2729 . 2  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
73, 4, 63bitr4ri 211 1  |-  ( A  e.  B  <->  { A }  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283    = wceq 1285    e. wcel 1434   _Vcvv 2602    C_ wss 2974   {csn 3400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-sn 3406
This theorem is referenced by:  snssg  3524  prss  3543  tpss  3552  snelpw  3970  sspwb  3973  mss  3983  exss  3984  reg2exmidlema  4279  elnn  4348  relsn  4465  fnressn  5375  un0mulcl  8378  nn0ssz  8439  fimaxre2  10236  bdsnss  10807
  Copyright terms: Public domain W3C validator