Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp2 Unicode version

Theorem snsstp2 3556
 Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 3554 . . 3
2 ssun1 3145 . . 3
31, 2sstri 3017 . 2
4 df-tp 3424 . 2
53, 4sseqtr4i 3041 1
 Colors of variables: wff set class Syntax hints:   cun 2980   wss 2982  csn 3416  cpr 3417  ctp 3418 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pr 3423  df-tp 3424 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator