ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcev Unicode version

Theorem spcev 2664
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypotheses
Ref Expression
spcv.1  |-  A  e. 
_V
spcv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcev  |-  ( ps 
->  E. x ph )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem spcev
StepHypRef Expression
1 spcv.1 . 2  |-  A  e. 
_V
2 spcv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32spcegv 2658 . 2  |-  ( A  e.  _V  ->  ( ps  ->  E. x ph )
)
41, 3ax-mp 7 1  |-  ( ps 
->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  bnd2  3954  mss  3990  exss  3991  snnex  4209  opeldm  4566  elrnmpt1  4613  xpmlem  4772  ffoss  5186  ssimaex  5262  fvelrn  5326  eufnfv  5417  foeqcnvco  5458  cnvoprab  5883  domtr  6296  ensn1  6307  ac6sfi  6383
  Copyright terms: Public domain W3C validator