ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimedv Unicode version

Theorem spcimedv 2656
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1  |-  ( ph  ->  A  e.  B )
spcimedv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
Assertion
Ref Expression
spcimedv  |-  ( ph  ->  ( ch  ->  E. x ps ) )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem spcimedv
StepHypRef Expression
1 spcimedv.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
21ex 112 . . 3  |-  ( ph  ->  ( x  =  A  ->  ( ch  ->  ps ) ) )
32alrimiv 1770 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  ( ch  ->  ps ) ) )
4 spcimdv.1 . 2  |-  ( ph  ->  A  e.  B )
5 nfv 1437 . . 3  |-  F/ x ch
6 nfcv 2194 . . 3  |-  F/_ x A
75, 6spcimegft 2648 . 2  |-  ( A. x ( x  =  A  ->  ( ch  ->  ps ) )  -> 
( A  e.  B  ->  ( ch  ->  E. x ps ) ) )
83, 4, 7sylc 60 1  |-  ( ph  ->  ( ch  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  rspcimedv  2675
  Copyright terms: Public domain W3C validator