Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft Unicode version

Theorem spcimegft 2677
 Description: A closed version of spcimegf 2680. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1
spcimgft.2
Assertion
Ref Expression
spcimegft

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2611 . 2
2 spcimgft.2 . . . . 5
32issetf 2607 . . . 4
4 exim 1531 . . . 4
53, 4syl5bi 150 . . 3
6 spcimgft.1 . . . 4
7619.37-1 1605 . . 3
85, 7syl6 33 . 2
91, 8syl5 32 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1283   wceq 1285  wnf 1390  wex 1422   wcel 1434  wnfc 2207  cvv 2602 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604 This theorem is referenced by:  spcegft  2678  spcimegf  2680  spcimedv  2685
 Copyright terms: Public domain W3C validator