Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv Unicode version

Theorem spcv 2692
 Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1
spcv.2
Assertion
Ref Expression
spcv
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2
2 spcv.2 . . 3
32spcgv 2686 . 2
41, 3ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103  wal 1283   wceq 1285   wcel 1434  cvv 2602 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604 This theorem is referenced by:  morex  2777  rext  3978  ontr2exmid  4276  regexmidlem1  4284  reg2exmid  4287  relop  4514  rdgtfr  6023  ssfiexmid  6411  domfiexmid  6413  diffitest  6421  findcard  6422  bj-d0clsepcl  10878  bj-inf2vnlem1  10923
 Copyright terms: Public domain W3C validator