ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 Unicode version

Theorem sqoddm1div8 10437
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5774 . . . . . 6  |-  ( M  =  ( ( 2  x.  N )  +  1 )  ->  ( M ^ 2 )  =  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
2 2z 9075 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
4 id 19 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
53, 4zmulcld 9172 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
65zcnd 9167 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
7 binom21 10397 . . . . . . 7  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
86, 7syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
91, 8sylan9eqr 2192 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( M ^
2 )  =  ( ( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
109oveq1d 5782 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 ) )
11 2cnd 8786 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  CC )
12 zcn 9052 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
1311, 12sqmuld 10429 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
14 sq2 10381 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
1514a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2 ^ 2 )  =  4 )
1615oveq1d 5782 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
1713, 16eqtrd 2170 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
18 mulass 7744 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
1918eqcomd 2143 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  e.  CC  /\  N  e.  CC )  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
2011, 11, 12, 19syl3anc 1216 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
21 2t2e4 8867 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
2221a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2322oveq1d 5782 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
2420, 23eqtrd 2170 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  ( 2  x.  N ) )  =  ( 4  x.  N ) )
2517, 24oveq12d 5785 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
2625oveq1d 5782 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 ) )
2726oveq1d 5782 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 ) )
28 4z 9077 . . . . . . . . . . 11  |-  4  e.  ZZ
2928a1i 9 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  4  e.  ZZ )
30 zsqcl 10356 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
3129, 30zmulcld 9172 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  ZZ )
3231zcnd 9167 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  ( N ^ 2 ) )  e.  CC )
3329, 4zmulcld 9172 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  ZZ )
3433zcnd 9167 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
4  x.  N )  e.  CC )
3532, 34addcld 7778 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC )
36 pncan1 8132 . . . . . . 7  |-  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  e.  CC  ->  ( (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
3735, 36syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3827, 37eqtrd 2170 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
2  x.  N ) ) )  +  1 )  -  1 )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
3938adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4010, 39eqtrd 2170 . . 3  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( M ^ 2 )  - 
1 )  =  ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) ) )
4140oveq1d 5782 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 ) )
42 4cn 8791 . . . . . . 7  |-  4  e.  CC
4342a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  4  e.  CC )
4430zcnd 9167 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  CC )
4543, 44, 12adddid 7783 . . . . 5  |-  ( N  e.  ZZ  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
4645eqcomd 2143 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
4746oveq1d 5782 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 ) )
4847adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  / 
8 )  =  ( ( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 ) )
49 4t2e8 8871 . . . . . . 7  |-  ( 4  x.  2 )  =  8
5049a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  (
4  x.  2 )  =  8 )
5150eqcomd 2143 . . . . 5  |-  ( N  e.  ZZ  ->  8  =  ( 4  x.  2 ) )
5251oveq2d 5783 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
( 4  x.  2 ) ) )
5330, 4zaddcld 9170 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  ZZ )
5453zcnd 9167 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  e.  CC )
55 2ap0 8806 . . . . . 6  |-  2 #  0
5655a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
57 4ap0 8812 . . . . . 6  |-  4 #  0
5857a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  4 #  0 )
5954, 11, 43, 56, 58divcanap5d 8570 . . . 4  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  ( 4  x.  2 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
6012sqvald 10414 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
6160oveq1d 5782 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  N ) )
6212mulid1d 7776 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  x.  1 )  =  N )
6362eqcomd 2143 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  =  ( N  x.  1 ) )
6463oveq2d 5783 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
65 1cnd 7775 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
66 adddi 7745 . . . . . . . 8  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
6766eqcomd 2143 . . . . . . 7  |-  ( ( N  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6812, 12, 65, 67syl3anc 1216 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
6961, 64, 683eqtrd 2174 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
7069oveq1d 5782 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7152, 59, 703eqtrd 2174 . . 3  |-  ( N  e.  ZZ  ->  (
( 4  x.  (
( N ^ 2 )  +  N ) )  /  8 )  =  ( ( N  x.  ( N  + 
1 ) )  / 
2 ) )
7271adantr 274 . 2  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( 4  x.  ( ( N ^ 2 )  +  N ) )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
7341, 48, 723eqtrd 2174 1  |-  ( ( N  e.  ZZ  /\  M  =  ( (
2  x.  N )  +  1 ) )  ->  ( ( ( M ^ 2 )  -  1 )  / 
8 )  =  ( ( N  x.  ( N  +  1 ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926   # cap 8336    / cdiv 8425   2c2 8764   4c4 8766   8c8 8770   ZZcz 9047   ^cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-7 8777  df-8 8778  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  sqoddm1div8z  11572
  Copyright terms: Public domain W3C validator