ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtlt Unicode version

Theorem sqrtlt 10802
Description: Square root is strictly monotonic. Closed form of sqrtlti 10902. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
sqrtlt  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( sqr `  A
)  <  ( sqr `  B ) ) )

Proof of Theorem sqrtlt
StepHypRef Expression
1 resqrtcl 10794 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
2 sqrtge0 10798 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  ( sqr `  A ) )
31, 2jca 304 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) ) )
4 resqrtcl 10794 . . . 4  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( sqr `  B
)  e.  RR )
5 sqrtge0 10798 . . . 4  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
0  <_  ( sqr `  B ) )
64, 5jca 304 . . 3  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( ( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) ) )
7 lt2sq 10359 . . 3  |-  ( ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  /\  (
( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) ) )  -> 
( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( sqr `  A ) ^
2 )  <  (
( sqr `  B
) ^ 2 ) ) )
83, 6, 7syl2an 287 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( sqr `  A )  < 
( sqr `  B
)  <->  ( ( sqr `  A ) ^ 2 )  <  ( ( sqr `  B ) ^ 2 ) ) )
9 resqrtth 10796 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
10 resqrtth 10796 . . 3  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( ( sqr `  B
) ^ 2 )  =  B )
119, 10breqan12d 3940 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( sqr `  A
) ^ 2 )  <  ( ( sqr `  B ) ^ 2 )  <->  A  <  B ) )
128, 11bitr2d 188 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( sqr `  A
)  <  ( sqr `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   RRcr 7612   0cc0 7613    < clt 7793    <_ cle 7794   2c2 8764   ^cexp 10285   sqrcsqrt 10761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-rsqrt 10763
This theorem is referenced by:  sqrt11ap  10803  sqrt2gt1lt2  10814  sqrtlti  10902  sqrtltd  10937
  Copyright terms: Public domain W3C validator