ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi Unicode version

Theorem ss2abi 3067
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ss2abi  |-  { x  |  ph }  C_  { x  |  ps }

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3063 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
2 ss2abi.1 . 2  |-  ( ph  ->  ps )
31, 2mpgbir 1383 1  |-  { x  |  ph }  C_  { x  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2068    C_ wss 2974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-in 2980  df-ss 2987
This theorem is referenced by:  abssi  3070  rabssab  3082  pwsnss  3603  iinuniss  3766  abssexg  3963  imassrn  4709  imadiflem  5009  imainlem  5011  fabexg  5108  f1oabexg  5169  tfrcllemssrecs  6001
  Copyright terms: Public domain W3C validator