ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rab Unicode version

Theorem ss2rab 3168
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 2423 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2423 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2sseq12i 3120 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } )
4 ss2ab 3160 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
5 df-ral 2419 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
6 imdistan 440 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
76albii 1446 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
85, 7bitr2i 184 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  <->  A. x  e.  A  ( ph  ->  ps )
)
93, 4, 83bitri 205 1  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    e. wcel 1480   {cab 2123   A.wral 2414   {crab 2418    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rab 2423  df-in 3072  df-ss 3079
This theorem is referenced by:  ss2rabdv  3173  ss2rabi  3174
  Copyright terms: Public domain W3C validator