ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 Unicode version

Theorem ssab2 3079
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 107 . 2  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
21abssi 3070 1  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    e. wcel 1434   {cab 2068    C_ wss 2974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-in 2980  df-ss 2987
This theorem is referenced by:  ssrab2  3080  zfausab  3928  exss  3990  dmopabss  4575  fabexg  5108
  Copyright terms: Public domain W3C validator