ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssddif Unicode version

Theorem ssddif 3305
Description: Double complement and subset. Similar to ddifss 3309 but inside a class  B instead of the universal class  _V. In classical logic the subset operation on the right hand side could be an equality (that is,  A  C_  B  <->  ( B  \  ( B 
\  A ) )  =  A). (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ssddif  |-  ( A 
C_  B  <->  A  C_  ( B  \  ( B  \  A ) ) )

Proof of Theorem ssddif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ancr 319 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( x  e.  A  ->  ( x  e.  B  /\  x  e.  A
) ) )
2 simpr 109 . . . . . . . 8  |-  ( ( x  e.  B  /\  -.  x  e.  A
)  ->  -.  x  e.  A )
32con2i 616 . . . . . . 7  |-  ( x  e.  A  ->  -.  ( x  e.  B  /\  -.  x  e.  A
) )
43anim2i 339 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  B  /\  -.  ( x  e.  B  /\  -.  x  e.  A ) ) )
5 eldif 3075 . . . . . . 7  |-  ( x  e.  ( B  \ 
( B  \  A
) )  <->  ( x  e.  B  /\  -.  x  e.  ( B  \  A
) ) )
6 eldif 3075 . . . . . . . . 9  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
76notbii 657 . . . . . . . 8  |-  ( -.  x  e.  ( B 
\  A )  <->  -.  (
x  e.  B  /\  -.  x  e.  A
) )
87anbi2i 452 . . . . . . 7  |-  ( ( x  e.  B  /\  -.  x  e.  ( B  \  A ) )  <-> 
( x  e.  B  /\  -.  ( x  e.  B  /\  -.  x  e.  A ) ) )
95, 8bitri 183 . . . . . 6  |-  ( x  e.  ( B  \ 
( B  \  A
) )  <->  ( x  e.  B  /\  -.  (
x  e.  B  /\  -.  x  e.  A
) ) )
104, 9sylibr 133 . . . . 5  |-  ( ( x  e.  B  /\  x  e.  A )  ->  x  e.  ( B 
\  ( B  \  A ) ) )
111, 10syl6 33 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
12 eldifi 3193 . . . . 5  |-  ( x  e.  ( B  \ 
( B  \  A
) )  ->  x  e.  B )
1312imim2i 12 . . . 4  |-  ( ( x  e.  A  ->  x  e.  ( B  \  ( B  \  A
) ) )  -> 
( x  e.  A  ->  x  e.  B ) )
1411, 13impbii 125 . . 3  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  ->  x  e.  ( B  \  ( B  \  A
) ) ) )
1514albii 1446 . 2  |-  ( A. x ( x  e.  A  ->  x  e.  B )  <->  A. x
( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
16 dfss2 3081 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
17 dfss2 3081 . 2  |-  ( A 
C_  ( B  \ 
( B  \  A
) )  <->  A. x
( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
1815, 16, 173bitr4i 211 1  |-  ( A 
C_  B  <->  A  C_  ( B  \  ( B  \  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    e. wcel 1480    \ cdif 3063    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-dif 3068  df-in 3072  df-ss 3079
This theorem is referenced by:  ddifss  3309  inssddif  3312
  Copyright terms: Public domain W3C validator