![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseld | Unicode version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssel 2994 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: sselda 3000 sseldd 3001 ssneld 3002 elelpwi 3401 ssbrd 3834 uniopel 4019 onintonm 4269 sucprcreg 4300 ordsuc 4314 0elnn 4366 dmrnssfld 4623 nfunv 4963 opelf 5093 fvimacnv 5314 ffvelrn 5332 f1imass 5445 dftpos3 5911 nnmordi 6155 diffifi 6428 ordiso2 6505 prarloclemarch2 6671 ltexprlemrl 6862 cauappcvgprlemladdrl 6909 caucvgprlemladdrl 6930 caucvgprlem1 6931 uzind 8539 supinfneg 8764 infsupneg 8765 ixxssxr 8999 elfz0add 9211 fzoss1 9257 frecuzrdgrclt 9497 iseqss 9541 fisumcvg 10338 bj-nnord 10911 |
Copyright terms: Public domain | W3C validator |