ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselii Unicode version

Theorem sselii 2997
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseli.1  |-  A  C_  B
sselii.2  |-  C  e.  A
Assertion
Ref Expression
sselii  |-  C  e.  B

Proof of Theorem sselii
StepHypRef Expression
1 sselii.2 . 2  |-  C  e.  A
2 sseli.1 . . 3  |-  A  C_  B
32sseli 2996 . 2  |-  ( C  e.  A  ->  C  e.  B )
41, 3ax-mp 7 1  |-  C  e.  B
Colors of variables: wff set class
Syntax hints:    e. wcel 1434    C_ wss 2974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987
This theorem is referenced by:  brtpos0  5901  ax1cn  7091  recni  7193  0xr  7227  pnfxr  7233  nn0rei  8366  0xnn0  8424  nnzi  8453  nn0zi  8454
  Copyright terms: Public domain W3C validator