Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d Unicode version

Theorem sseq12d 3029
 Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1
sseq12d.2
Assertion
Ref Expression
sseq12d

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3
21sseq1d 3027 . 2
3 sseq12d.2 . . 3
43sseq2d 3028 . 2
52, 4bitrd 186 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285   wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987 This theorem is referenced by:  3sstr3d  3042  3sstr4d  3043  ssdifeq0  3332  relcnvtr  4870  rdgisucinc  6034  oawordriexmid  6114  nnaword  6150  nnawordi  6154
 Copyright terms: Public domain W3C validator