Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtr4d Unicode version

Theorem sseqtr4d 3037
 Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtr4d.1
sseqtr4d.2
Assertion
Ref Expression
sseqtr4d

Proof of Theorem sseqtr4d
StepHypRef Expression
1 sseqtr4d.1 . 2
2 sseqtr4d.2 . . 3
32eqcomd 2087 . 2
41, 3sseqtrd 3036 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987 This theorem is referenced by:  syl5sseqr  3049  fnfvima  5425  tfrlemiubacc  5979  tfr1onlemubacc  5995  tfrcllemubacc  6008  rdgivallem  6030
 Copyright terms: Public domain W3C validator