![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtr4i | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 |
![]() ![]() ![]() ![]() |
sseqtr4.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseqtr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseqtr4.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2086 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | sseqtri 3032 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: eqimss2i 3055 difdif2ss 3228 snsspr1 3541 snsspr2 3542 snsstp1 3543 snsstp2 3544 snsstp3 3545 prsstp12 3546 prsstp13 3547 prsstp23 3548 iunxdif2 3734 sssucid 4178 opabssxp 4440 dmresi 4691 cnvimass 4718 ssrnres 4793 cnvcnv 4803 cnvssrndm 4872 dmmpt2ssx 5856 tfrcllemssrecs 6001 sucinc 6089 ressxr 7224 ltrelxr 7240 nnssnn0 8358 un0addcl 8388 un0mulcl 8389 nn0ssxnn0 8421 fzossnn0 9261 isprm3 10644 |
Copyright terms: Public domain | W3C validator |