ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfilem Unicode version

Theorem ssfilem 6431
Description: Lemma for ssfiexmid 6432. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
ssfilem.1  |-  { z  e.  { (/) }  |  ph }  e.  Fin
Assertion
Ref Expression
ssfilem  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, z

Proof of Theorem ssfilem
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfilem.1 . . 3  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2 isfi 6329 . . 3  |-  ( { z  e.  { (/) }  |  ph }  e.  Fin 
<->  E. n  e.  om  { z  e.  { (/) }  |  ph }  ~~  n )
31, 2mpbi 143 . 2  |-  E. n  e.  om  { z  e. 
{ (/) }  |  ph }  ~~  n
4 0elnn 4386 . . . . 5  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
5 breq2 3809 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( { z  e.  { (/) }  |  ph }  ~~  n 
<->  { z  e.  { (/)
}  |  ph }  ~~  (/) ) )
6 en0 6363 . . . . . . . . . 10  |-  ( { z  e.  { (/) }  |  ph }  ~~  (/)  <->  { z  e.  { (/) }  |  ph }  =  (/) )
75, 6syl6bb 194 . . . . . . . . 9  |-  ( n  =  (/)  ->  ( { z  e.  { (/) }  |  ph }  ~~  n 
<->  { z  e.  { (/)
}  |  ph }  =  (/) ) )
87biimpac 292 . . . . . . . 8  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  n  =  (/) )  ->  { z  e.  { (/) }  |  ph }  =  (/) )
9 rabeq0 3290 . . . . . . . . 9  |-  ( { z  e.  { (/) }  |  ph }  =  (/)  <->  A. z  e.  { (/) }  -.  ph )
10 0ex 3925 . . . . . . . . . . 11  |-  (/)  e.  _V
1110snm 3528 . . . . . . . . . 10  |-  E. w  w  e.  { (/) }
12 r19.3rmv 3348 . . . . . . . . . 10  |-  ( E. w  w  e.  { (/)
}  ->  ( -.  ph  <->  A. z  e.  { (/) }  -.  ph ) )
1311, 12ax-mp 7 . . . . . . . . 9  |-  ( -. 
ph 
<-> 
A. z  e.  { (/)
}  -.  ph )
149, 13bitr4i 185 . . . . . . . 8  |-  ( { z  e.  { (/) }  |  ph }  =  (/)  <->  -. 
ph )
158, 14sylib 120 . . . . . . 7  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  n  =  (/) )  ->  -.  ph )
1615olcd 686 . . . . . 6  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  n  =  (/) )  ->  ( ph  \/  -.  ph )
)
17 ensym 6349 . . . . . . . 8  |-  ( { z  e.  { (/) }  |  ph }  ~~  n  ->  n  ~~  {
z  e.  { (/) }  |  ph } )
18 elex2 2624 . . . . . . . 8  |-  ( (/)  e.  n  ->  E. x  x  e.  n )
19 enm 6385 . . . . . . . 8  |-  ( ( n  ~~  { z  e.  { (/) }  |  ph }  /\  E. x  x  e.  n )  ->  E. y  y  e. 
{ z  e.  { (/)
}  |  ph }
)
2017, 18, 19syl2an 283 . . . . . . 7  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  (/)  e.  n
)  ->  E. y 
y  e.  { z  e.  { (/) }  |  ph } )
21 biidd 170 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( ph 
<-> 
ph ) )
2221elrab 2757 . . . . . . . . . 10  |-  ( y  e.  { z  e. 
{ (/) }  |  ph } 
<->  ( y  e.  { (/)
}  /\  ph ) )
2322simprbi 269 . . . . . . . . 9  |-  ( y  e.  { z  e. 
{ (/) }  |  ph }  ->  ph )
2423orcd 685 . . . . . . . 8  |-  ( y  e.  { z  e. 
{ (/) }  |  ph }  ->  ( ph  \/  -.  ph ) )
2524exlimiv 1530 . . . . . . 7  |-  ( E. y  y  e.  {
z  e.  { (/) }  |  ph }  ->  (
ph  \/  -.  ph )
)
2620, 25syl 14 . . . . . 6  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  (/)  e.  n
)  ->  ( ph  \/  -.  ph ) )
2716, 26jaodan 744 . . . . 5  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  (
n  =  (/)  \/  (/)  e.  n
) )  ->  ( ph  \/  -.  ph )
)
284, 27sylan2 280 . . . 4  |-  ( ( { z  e.  { (/)
}  |  ph }  ~~  n  /\  n  e.  om )  ->  ( ph  \/  -.  ph )
)
2928ancoms 264 . . 3  |-  ( ( n  e.  om  /\  { z  e.  { (/) }  |  ph }  ~~  n )  ->  ( ph  \/  -.  ph )
)
3029rexlimiva 2477 . 2  |-  ( E. n  e.  om  {
z  e.  { (/) }  |  ph }  ~~  n  ->  ( ph  \/  -.  ph ) )
313, 30ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2353   E.wrex 2354   {crab 2357   (/)c0 3267   {csn 3416   class class class wbr 3805   omcom 4359    ~~ cen 6306   Fincfn 6308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-er 6193  df-en 6309  df-fin 6311
This theorem is referenced by:  ssfiexmid  6432  domfiexmid  6434
  Copyright terms: Public domain W3C validator