ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab Unicode version

Theorem ssfirab 6822
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a  |-  ( ph  ->  A  e.  Fin )
ssfirab.dc  |-  ( ph  ->  A. x  e.  A DECID  ps )
Assertion
Ref Expression
ssfirab  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ssfirab
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2678 . . 3  |-  ( w  =  (/)  ->  { x  e.  w  |  ps }  =  { x  e.  (/)  |  ps }
)
21eleq1d 2208 . 2  |-  ( w  =  (/)  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  (/)  |  ps }  e.  Fin )
)
3 rabeq 2678 . . 3  |-  ( w  =  y  ->  { x  e.  w  |  ps }  =  { x  e.  y  |  ps } )
43eleq1d 2208 . 2  |-  ( w  =  y  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  y  |  ps }  e.  Fin ) )
5 rabeq 2678 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e.  w  |  ps }  =  { x  e.  ( y  u.  { z } )  |  ps } )
65eleq1d 2208 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
7 rabeq 2678 . . 3  |-  ( w  =  A  ->  { x  e.  w  |  ps }  =  { x  e.  A  |  ps } )
87eleq1d 2208 . 2  |-  ( w  =  A  ->  ( { x  e.  w  |  ps }  e.  Fin  <->  {
x  e.  A  |  ps }  e.  Fin )
)
9 rab0 3391 . . . 4  |-  { x  e.  (/)  |  ps }  =  (/)
10 0fin 6778 . . . 4  |-  (/)  e.  Fin
119, 10eqeltri 2212 . . 3  |-  { x  e.  (/)  |  ps }  e.  Fin
1211a1i 9 . 2  |-  ( ph  ->  { x  e.  (/)  |  ps }  e.  Fin )
13 rabun2 3355 . . . . 5  |-  { x  e.  ( y  u.  {
z } )  |  ps }  =  ( { x  e.  y  |  ps }  u.  { x  e.  { z }  |  ps }
)
14 sbsbc 2913 . . . . . . . . . 10  |-  ( [ z  /  x ] ps 
<-> 
[. z  /  x ]. ps )
15 vex 2689 . . . . . . . . . . 11  |-  z  e. 
_V
16 ralsns 3562 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps ) )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  ( A. x  e.  { z } ps  <->  [. z  /  x ]. ps )
1814, 17bitr4i 186 . . . . . . . . 9  |-  ( [ z  /  x ] ps 
<-> 
A. x  e.  {
z } ps )
19 rabid2 2607 . . . . . . . . 9  |-  ( { z }  =  {
x  e.  { z }  |  ps }  <->  A. x  e.  { z } ps )
2018, 19sylbb2 137 . . . . . . . 8  |-  ( [ z  /  x ] ps  ->  { z }  =  { x  e. 
{ z }  |  ps } )
2120adantl 275 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { z }  =  { x  e.  { z }  |  ps } )
2221uneq2d 3230 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  =  ( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } ) )
23 simplr 519 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
2415a1i 9 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  _V )
25 simprr 521 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2625ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  z  e.  ( A  \  y
) )
2726eldifbd 3083 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  y )
28 elrabi 2837 . . . . . . . 8  |-  ( z  e.  { x  e.  y  |  ps }  ->  z  e.  y )
2927, 28nsyl 617 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  -.  z  e.  { x  e.  y  |  ps } )
30 unsnfi 6807 . . . . . . 7  |-  ( ( { x  e.  y  |  ps }  e.  Fin  /\  z  e.  _V  /\ 
-.  z  e.  {
x  e.  y  |  ps } )  -> 
( { x  e.  y  |  ps }  u.  { z } )  e.  Fin )
3123, 24, 29, 30syl3anc 1216 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
z } )  e. 
Fin )
3222, 31eqeltrrd 2217 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  ( { x  e.  y  |  ps }  u.  {
x  e.  { z }  |  ps }
)  e.  Fin )
3313, 32eqeltrid 2226 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  [ z  /  x ] ps )  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin )
34 ralsns 3562 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
)
3515, 34ax-mp 5 . . . . . . . . . . 11  |-  ( A. x  e.  { z }  -.  ps  <->  [. z  /  x ].  -.  ps )
36 sbsbc 2913 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  [. z  /  x ].  -.  ps )
37 sbn 1925 . . . . . . . . . . 11  |-  ( [ z  /  x ]  -.  ps  <->  -.  [ z  /  x ] ps )
3835, 36, 373bitr2ri 208 . . . . . . . . . 10  |-  ( -. 
[ z  /  x ] ps  <->  A. x  e.  {
z }  -.  ps )
39 rabeq0 3392 . . . . . . . . . 10  |-  ( { x  e.  { z }  |  ps }  =  (/)  <->  A. x  e.  {
z }  -.  ps )
4038, 39sylbb2 137 . . . . . . . . 9  |-  ( -. 
[ z  /  x ] ps  ->  { x  e.  { z }  |  ps }  =  (/) )
4140adantl 275 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  { z }  |  ps }  =  (/) )
4241uneq2d 3230 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  ( { x  e.  y  |  ps }  u.  (/) ) )
43 un0 3396 . . . . . . 7  |-  ( { x  e.  y  |  ps }  u.  (/) )  =  { x  e.  y  |  ps }
4442, 43syl6eq 2188 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  -> 
( { x  e.  y  |  ps }  u.  { x  e.  {
z }  |  ps } )  =  {
x  e.  y  |  ps } )
4513, 44syl5eq 2184 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  =  { x  e.  y  |  ps } )
46 simplr 519 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  y  |  ps }  e.  Fin )
4745, 46eqeltrd 2216 . . . 4  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  /\  -.  [ z  /  x ] ps )  ->  { x  e.  (
y  u.  { z } )  |  ps }  e.  Fin )
48 simplrr 525 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  ( A 
\  y ) )
4948eldifad 3082 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  z  e.  A )
50 ssfirab.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  A DECID  ps )
5150ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  A. x  e.  A DECID  ps )
52 nfs1v 1912 . . . . . . . 8  |-  F/ x [ z  /  x ] ps
5352nfdc 1637 . . . . . . 7  |-  F/ xDECID  [ z  /  x ] ps
54 sbequ12 1744 . . . . . . . 8  |-  ( x  =  z  ->  ( ps 
<->  [ z  /  x ] ps ) )
5554dcbid 823 . . . . . . 7  |-  ( x  =  z  ->  (DECID  ps  <-> DECID  [ z  /  x ] ps ) )
5653, 55rspc 2783 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ps  -> DECID  [ z  /  x ] ps ) )
5749, 51, 56sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  -> DECID  [ z  /  x ] ps )
58 exmiddc 821 . . . . 5  |-  (DECID  [ z  /  x ] ps  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
5957, 58syl 14 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  ( [ z  /  x ] ps  \/  -.  [ z  /  x ] ps ) )
6033, 47, 59mpjaodan 787 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  { x  e.  y  |  ps }  e.  Fin )  ->  { x  e.  ( y  u.  { z } )  |  ps }  e.  Fin )
6160ex 114 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { x  e.  y  |  ps }  e.  Fin  ->  { x  e.  ( y  u.  {
z } )  |  ps }  e.  Fin ) )
62 ssfirab.a . 2  |-  ( ph  ->  A  e.  Fin )
632, 4, 6, 8, 12, 61, 62findcard2sd 6786 1  |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   [wsb 1735   A.wral 2416   {crab 2420   _Vcvv 2686   [.wsbc 2909    \ cdif 3068    u. cun 3069    C_ wss 3071   (/)c0 3363   {csn 3527   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  ssfidc  6823  phivalfi  11888  hashdvds  11897  phiprmpw  11898  phimullem  11901  hashgcdeq  11904
  Copyright terms: Public domain W3C validator