ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonunii Unicode version

Theorem ssonunii 4261
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
ssonuni.1  |-  A  e. 
_V
Assertion
Ref Expression
ssonunii  |-  ( A 
C_  On  ->  U. A  e.  On )

Proof of Theorem ssonunii
StepHypRef Expression
1 ssonuni.1 . 2  |-  A  e. 
_V
2 ssonuni 4260 . 2  |-  ( A  e.  _V  ->  ( A  C_  On  ->  U. A  e.  On ) )
31, 2ax-mp 7 1  |-  ( A 
C_  On  ->  U. A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   _Vcvv 2610    C_ wss 2982   U.cuni 3621   Oncon0 4146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-un 4216
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-in 2988  df-ss 2995  df-uni 3622  df-tr 3896  df-iord 4149  df-on 4151
This theorem is referenced by:  bm2.5ii  4268
  Copyright terms: Public domain W3C validator