ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2dv Unicode version

Theorem ssopab2dv 4041
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ssopab2dv  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimivv 1797 . 2  |-  ( ph  ->  A. x A. y
( ps  ->  ch ) )
3 ssopab2 4038 . 2  |-  ( A. x A. y ( ps 
->  ch )  ->  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ch } )
42, 3syl 14 1  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1283    C_ wss 2974   {copab 3846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-in 2980  df-ss 2987  df-opab 3848
This theorem is referenced by:  xpss12  4473  coss1  4519  coss2  4520  cnvss  4536  shftfvalg  9844  shftfval  9847
  Copyright terms: Public domain W3C validator