ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2b Unicode version

Theorem ssoprab2b 5590
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4041. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2b  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )

Proof of Theorem ssoprab2b
StepHypRef Expression
1 nfoprab1 5582 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
2 nfoprab1 5582 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ps }
31, 2nfss 2966 . . 3  |-  F/ x { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
4 nfoprab2 5583 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
5 nfoprab2 5583 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ps }
64, 5nfss 2966 . . . 4  |-  F/ y { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
7 nfoprab3 5584 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
8 nfoprab3 5584 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  |  ps }
97, 8nfss 2966 . . . . 5  |-  F/ z { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
10 ssel 2967 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( <. <. x ,  y >. ,  z
>.  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps } ) )
11 oprabid 5565 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
12 oprabid 5565 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  ps )
1310, 11, 123imtr3g 197 . . . . 5  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( ph  ->  ps ) )
149, 13alrimi 1431 . . . 4  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. z ( ph  ->  ps ) )
156, 14alrimi 1431 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. y A. z
( ph  ->  ps )
)
163, 15alrimi 1431 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. x A. y A. z ( ph  ->  ps ) )
17 ssoprab2 5589 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
1816, 17impbii 121 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257    e. wcel 1409    C_ wss 2945   <.cop 3406   {coprab 5541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-oprab 5544
This theorem is referenced by:  eqoprab2b  5591
  Copyright terms: Public domain W3C validator