ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprr Unicode version

Theorem ssprr 3678
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
ssprr  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )

Proof of Theorem ssprr
StepHypRef Expression
1 0ss 3396 . . . 4  |-  (/)  C_  { B ,  C }
2 sseq1 3115 . . . 4  |-  ( A  =  (/)  ->  ( A 
C_  { B ,  C }  <->  (/)  C_  { B ,  C } ) )
31, 2mpbiri 167 . . 3  |-  ( A  =  (/)  ->  A  C_  { B ,  C }
)
4 snsspr1 3663 . . . 4  |-  { B }  C_  { B ,  C }
5 sseq1 3115 . . . 4  |-  ( A  =  { B }  ->  ( A  C_  { B ,  C }  <->  { B }  C_  { B ,  C } ) )
64, 5mpbiri 167 . . 3  |-  ( A  =  { B }  ->  A  C_  { B ,  C } )
73, 6jaoi 705 . 2  |-  ( ( A  =  (/)  \/  A  =  { B } )  ->  A  C_  { B ,  C } )
8 snsspr2 3664 . . . 4  |-  { C }  C_  { B ,  C }
9 sseq1 3115 . . . 4  |-  ( A  =  { C }  ->  ( A  C_  { B ,  C }  <->  { C }  C_  { B ,  C } ) )
108, 9mpbiri 167 . . 3  |-  ( A  =  { C }  ->  A  C_  { B ,  C } )
11 eqimss 3146 . . 3  |-  ( A  =  { B ,  C }  ->  A  C_  { B ,  C }
)
1210, 11jaoi 705 . 2  |-  ( ( A  =  { C }  \/  A  =  { B ,  C }
)  ->  A  C_  { B ,  C } )
137, 12jaoi 705 1  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 697    = wceq 1331    C_ wss 3066   (/)c0 3358   {csn 3522   {cpr 3523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pr 3529
This theorem is referenced by:  sstpr  3679  pwprss  3727
  Copyright terms: Public domain W3C validator