Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab Unicode version

Theorem ssrab 3046
 Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2332 . . 3
21sseq2i 2998 . 2
3 ssab 3038 . 2
4 dfss3 2963 . . . 4
54anbi1i 439 . . 3
6 r19.26 2458 . . 3
7 df-ral 2328 . . 3
85, 6, 73bitr2ri 202 . 2
92, 3, 83bitri 199 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102  wal 1257   wcel 1409  cab 2042  wral 2323  crab 2327   wss 2945 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-in 2952  df-ss 2959 This theorem is referenced by:  ssrabdv  3047  frind  4117
 Copyright terms: Public domain W3C validator