![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssrab2 | Unicode version |
Description: Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
ssrab2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2358 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssab2 3079 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqsstri 3030 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rab 2358 df-in 2980 df-ss 2987 |
This theorem is referenced by: ssrabeq 3081 rabexg 3929 pwnss 3941 onintrab2im 4270 ordtriexmidlem 4271 ontr2exmid 4276 ordtri2or2exmidlem 4277 onsucsssucexmid 4278 onsucelsucexmidlem 4280 tfis 4332 nnregexmid 4368 dmmptss 4847 ssimaex 5266 f1oresrab 5361 riotacl 5513 ssfiexmid 6411 domfiexmid 6413 genpelxp 6763 ltexprlempr 6860 cauappcvgprlemcl 6905 cauappcvgprlemladd 6910 caucvgprlemcl 6928 caucvgprprlemcl 6956 uzf 8703 supminfex 8766 rpre 8821 ixxf 8997 fzf 9109 serige0 9570 expcl2lemap 9585 expclzaplem 9597 expge0 9609 expge1 9610 dvdsflip 10396 infssuzex 10489 infssuzcldc 10491 gcddvds 10499 lcmn0cl 10594 bdrabexg 10855 |
Copyright terms: Public domain | W3C validator |