ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel Unicode version

Theorem ssrel 4456
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrel  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem ssrel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 2967 . . 3  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21alrimivv 1771 . 2  |-  ( A 
C_  B  ->  A. x A. y ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) )
3 eleq1 2116 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  A  <->  <. x ,  y
>.  e.  A ) )
4 eleq1 2116 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  B  <->  <. x ,  y
>.  e.  B ) )
53, 4imbi12d 227 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  A  ->  z  e.  B )  <->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) ) )
65biimprcd 153 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  A  ->  z  e.  B ) ) )
762alimi 1361 . . . . . . . 8  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  A. x A. y ( z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
8 19.23vv 1780 . . . . . . . 8  |-  ( A. x A. y ( z  =  <. x ,  y
>.  ->  ( z  e.  A  ->  z  e.  B ) )  <->  ( E. x E. y  z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
97, 8sylib 131 . . . . . . 7  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( E. x E. y  z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
109com23 76 . . . . . 6  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( z  e.  A  ->  ( E. x E. y  z  =  <. x ,  y
>.  ->  z  e.  B
) ) )
1110a2d 26 . . . . 5  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( (
z  e.  A  ->  E. x E. y  z  =  <. x ,  y
>. )  ->  ( z  e.  A  ->  z  e.  B ) ) )
1211alimdv 1775 . . . 4  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  A  ->  z  e.  B ) ) )
13 df-rel 4380 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
14 dfss2 2962 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  <->  A. z ( z  e.  A  ->  z  e.  ( _V  X.  _V ) ) )
15 elvv 4430 . . . . . . 7  |-  ( z  e.  ( _V  X.  _V )  <->  E. x E. y 
z  =  <. x ,  y >. )
1615imbi2i 219 . . . . . 6  |-  ( ( z  e.  A  -> 
z  e.  ( _V 
X.  _V ) )  <->  ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
1716albii 1375 . . . . 5  |-  ( A. z ( z  e.  A  ->  z  e.  ( _V  X.  _V )
)  <->  A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
1813, 14, 173bitri 199 . . . 4  |-  ( Rel 
A  <->  A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
19 dfss2 2962 . . . 4  |-  ( A 
C_  B  <->  A. z
( z  e.  A  ->  z  e.  B ) )
2012, 18, 193imtr4g 198 . . 3  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( Rel  A  ->  A  C_  B
) )
2120com12 30 . 2  |-  ( Rel 
A  ->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  A  C_  B
) )
222, 21impbid2 135 1  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574    C_ wss 2945   <.cop 3406    X. cxp 4371   Rel wrel 4378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-xp 4379  df-rel 4380
This theorem is referenced by:  eqrel  4457  relssi  4459  relssdv  4460  cotr  4734  cnvsym  4736  intasym  4737  intirr  4739  codir  4741  qfto  4742
  Copyright terms: Public domain W3C validator