ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrelrel Unicode version

Theorem ssrelrel 4466
Description: A subclass relationship determined by ordered triples. Use relrelss 4874 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem ssrelrel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 2994 . . . 4  |-  ( A 
C_  B  ->  ( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
21alrimiv 1796 . . 3  |-  ( A 
C_  B  ->  A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
32alrimivv 1797 . 2  |-  ( A 
C_  B  ->  A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
4 elvvv 4429 . . . . . . . 8  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
5 eleq1 2142 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  A
) )
6 eleq1 2142 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  B  <->  <. <. x ,  y >. ,  z >.  e.  B
) )
75, 6imbi12d 232 . . . . . . . . . . . . 13  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( ( w  e.  A  ->  w  e.  B )  <->  ( <. <.
x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B ) ) )
87biimprcd 158 . . . . . . . . . . . 12  |-  ( (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
) )
98alimi 1385 . . . . . . . . . . 11  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
10 19.23v 1805 . . . . . . . . . . 11  |-  ( A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) )  <->  ( E. z  w  =  <. <. x ,  y >. ,  z
>.  ->  ( w  e.  A  ->  w  e.  B ) ) )
119, 10sylib 120 . . . . . . . . . 10  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
12112alimi 1386 . . . . . . . . 9  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. x A. y ( E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
13 19.23vv 1806 . . . . . . . . 9  |-  ( A. x A. y ( E. z  w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
)  <->  ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
1412, 13sylib 120 . . . . . . . 8  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
154, 14syl5bi 150 . . . . . . 7  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  ( ( _V  X.  _V )  X.  _V )  -> 
( w  e.  A  ->  w  e.  B ) ) )
1615com23 77 . . . . . 6  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  A  ->  ( w  e.  ( ( _V  X.  _V )  X.  _V )  ->  w  e.  B )
) )
1716a2d 26 . . . . 5  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
)  ->  ( w  e.  A  ->  w  e.  B ) ) )
1817alimdv 1801 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X. 
_V ) )  ->  A. w ( w  e.  A  ->  w  e.  B ) ) )
19 dfss2 2989 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V ) 
<-> 
A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
20 dfss2 2989 . . . 4  |-  ( A 
C_  B  <->  A. w
( w  e.  A  ->  w  e.  B ) )
2118, 19, 203imtr4g 203 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A  C_  (
( _V  X.  _V )  X.  _V )  ->  A  C_  B ) )
2221com12 30 . 2  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A  C_  B ) )
233, 22impbid2 141 1  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434   _Vcvv 2602    C_ wss 2974   <.cop 3409    X. cxp 4369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-opab 3848  df-xp 4377
This theorem is referenced by:  eqrelrel  4467
  Copyright terms: Public domain W3C validator